To the Problem of Constructing Analytical Indexes of Market Demand: A Variative Approach
https://doi.org/10.34023/2313-6383-2020-27-3-65-80
Abstract
The article develops methods for constructing economic (analytical) indexes in the framework of the holistic theory of market demand, built in recent years. By this, the economic indexes presented in the world literature within the framework of the theory of individual demand and, accordingly, related to households, acquire practical value.
The introduction provides a brief overview of the main problems of modern indexology and the implementation of an economic approach dating back to the classical work of 1924 by the Soviet statistician A.A. Konüs. The properties of the most well-known «formula» indexes of Laspeyres, Paasche, and Fischer with respect to the fulfillment of the Fisher test criteria are described. These indexes play an important role in the methods proposed by the authors for constructing analytical indexes, which are determined through the function of consumer expenditures. The latter is determined by a utility function that rationalizes trade statistics. The rationalizing utility function is constructed ambiguously, and the corresponding task should be specified. Methods for its solution are proposed, developed within a non-parametric demand analysis of Afriat-Varian. The core of this analysis is the system of linear Afriat’s inequalities that determine the values of the utility function and marginal utility corresponding to statistical demand. This system can be inconsistent and unstable with respect to variations of non-exact demand statistics. In the case of compatibility, inequalities have many solutions, and the choice of different solutions of inequalities gives different values of analytical indexes. The authors suggest three types of tasks for the stable solution of Afriat’s inequalities, which define indexes with characteristics of optimism (low price indexes and high quantity indexes), pessimism (vice versa) and objectivity.
Therefore, the problem of increasing the objectivity of consumer demand indexes receives a theoretically justified toolbox methods for calculating analytical market demand indexes that take into account, in contrast to formula indices, consumer preferences.
Keywords
About the Authors
V. K. GorbunovRussian Federation
Vladimir K. Gorbunov – Dr. Sci. (Phys.-Math.), Professor, Department of Digital Economics
42, Leo Tolstoy Street, Ulyanovsk, 432017
L. A. Kozlova
Russian Federation
Lyubov A. Kozlova – Cand. Sci. (Tech.), Associate Professor, Department of Digital Economics
42, Leo Tolstoy Street, Ulyanovsk, 432017
A. G. Lvov
Russian Federation
Alexander G. Lvov – Cand. Sci. (Econ.), Leading Specialist, AirBridgeCargo Airlines LLC
28B, Mezhdunarodnoye shosse, Moscow, 141411
References
1. Consumer Price Index Manual: Theory and Practice. Geneva: International Labour Office; 2004. Available from: https://www.ilo.org/public/english/bureau/stat/download/cpi/cpi_manual_en.pdf.
2. Köves P. Index Theory and Economic Reality. Budapest: Akadйmiai Kiadу; 1983. (Russ. ed.: Kevesh P. Teoriya indeksov i praktika ekonomicheskogo analiza. Moscow: Finansy i statistika, 1990.)
3. Diewert W.E. Irving Fisher and Index Number Theory. Journal of the History of Economic Thought. 2013;35(2):199-232. Available from: https://doi.org/10.1017/S1053837213000072.
4. Diewert W.E. The Consumer Price Index and Index Number Purpose. Journal of Economic and Social Measurement. 2001;27(3-4):167-248.
5. Afriat S. The Index Number Problem. Construction Theorems. Oxford: Oxford University Press; 2014. 220 p. (Mathematical Review: MR3185418 of Gorbunov V.)
6. Konüs A.A. The Problem of the True Index of the Cost of Living. Econometrica. 1939;7(1):10-29. (Russ. ed.: Konüs A.A. Teoriya indeksov i praktika ekonomicheskogo analiza. Ekonomicheskii Byulleten’ Kony’unkturnogo Instituta. 1924;(9-10):64-71.)
7. Samuelson P.A., Swamy S. Invariant Economic Index Numbers and Canonical Duality: Survey and Synthesis. The American Economic Review. 1974;64(4):566-593.
8. Triplett J.E. Should the Cost-of-Living Index Provide the Conceptual Framework for a Consumer Price Index? The Economic Journal. 2001;111(472):F311-F334.
9. Breuer C.C., Lippe P. Problems of Operationalizing the Concept of a Cost-Of-Living Index. MPRA Paper. No. 32902. 2011. Available from: https://mpra.ub.unimuenchen.de/32902/.
10. Zorkaltsev V.I. Price Indexes and Inflationary Processes. Novosibirsk: Nauka Publ.; 1996. (In Russ.)
11. Mas-Colell A., Whinston M., Green J. Microeconomic Theory. New York: Oxford Univ. Press; 1995.
12. Deaton A., Muellbauer J. An Almost Ideal Demand System. The American Economic Review. 1980;70(3): 312-326.
13. Ivanov Yu.N. On New International Standard in Compilation of Price Statistics and Review of Practices in CIS Countries. HSE Economic Journal. 2007;11(3):364-380.(In Russ.)
14. Ivanov Yu.N. The Debate about the Accuracy of Indicators of Macroeconomic Statistics. Voprosy Statistiki. 2017;(9):10-18. (In Russ.)
15. Ivanov Yu.N. On Some Fundamental Provisions of the Price Index Theory. Voprosy Statistiki. 2018;25(7):23-30. (In Russ.)
16. Gorbunov V.K. Mathematical Model of Consumers’ Demand: Theory and Applied Potential. Moscow: Economika Publ.; 2004. 174 p. (In Russ.)
17. Gorbunov V.K. Consumers’ Demand: Analytical Theory and Applications. Ulyanovsk: UlSU Press; 2015. 264 p. (In Russ.) Available from: http://www.rfbr.ru/rffi/ru/books/o_1945611.
18. Kozlova L.A. Algorithms and Programs for Constructing Invariant and Quasi-Invariant Consumers’ Demand Indexes. Cand. Tech. Sci. Diss. Ul’yanovsk: UlSU; 2010. (In Russ.)
19. Gorbunov V.K., Kozlova L.A. Shaping the Market Consumer Demand and Analytical Indices of Demand. Voprosy Statistiki. 2015;(6):36-45. (In Russ.)
20. Gorbunov V.K., Lvov A.G. Inverse Problem of the Market Demand Theory and Analytical Indices of Demand. Middle Volga Mathematical Society Journal. 2019;25(1):89-110/(In Russ.)
21. Afriat S.N. The Construction of Utility Functions from Expenditure Data. International Economic Review. 1967;8(1):67-77.
22. Varian H. The Nonparametric Approach to Demand Analysis. Econometrica. 1982;50(4):945-973.
23. Varian H. Non-Parametric Tests of Consumer Behaviour. The Review of Economic Studies. 1983;50(1):99-110.
24. Afriat S.N. The Theory of International Comparisons of Real Income and Prices. In: Daly D.J. (ed.) International Comparisons of Prices and Output. New York: NBER; 1972. Ch. 1. P. 13-84.
25. Hands D.W. The Individual and The Market: Paul Samuelson on (Homothetic) Santa Claus Economics. The European Journal of the History of Economic Thought. 2014;23(3):425-452.
26. Pospelova L.Ya., Shananin A.A. The Value of Nonrationality for Consumer Behavior and Generalized Nonparametric Method. Matematicheskoye Modelirovaniye. 1998;10(10):105-116. (In Russ.)
27. Kondrakov I.A., Pospelova L.Ya., Shananin A.A. Generalized Nonparametric Method. Application to the Analysis of the Commodity Markets. Trudy MFTI. 2010;2(3):32-45. (In Russ.)
28. Diewert W.E. Afriat and Revealed Preference Theory. The Review of Economic Studies. 1973;(40):419-425. Available from: https://doi.org/10.2307/2296461.
29. Fleissig A., Whitney G. Testing for the Significance of Violations of Afriat’s Inequalities. Journal of Business and Economic Statistics. 2005;23(3):355-362.
30. Tikhonov A.N., Arsenin V.Ya. Solution of Ill-Posed Problems. New York: Winston-Wiley; 1977. 258 p. (Russ. ed.: Tikhonov A.N., Arsenin V.Ya. Metody Resheniya Nekorrektnykh Zadach. Moscow: Nauka Publ.: 1986.)
Review
For citations:
Gorbunov V.K., Kozlova L.A., Lvov A.G. To the Problem of Constructing Analytical Indexes of Market Demand: A Variative Approach. Voprosy statistiki. 2020;27(3):65-80. (In Russ.) https://doi.org/10.34023/2313-6383-2020-27-3-65-80