Preview

Voprosy statistiki

Advanced search

On the issue of application of the Gini coefficient and other inequality indices

https://doi.org/10.34023/2313-6383-2016-0-2-71-80

Abstract

This article discusses a problem posed by G.L. Gromyko and I.L. Matyukhina in their publication «On the use of the Gini index in economic and statistical studies» (Voprosystatistiki, 2015, no. 9), and states a viewpoint regarding calculation of the Gini coefficient with the use of average, relative, and some other values. As the author points out, the Gini coefficient is merely one of many inequality measures; thus the statements regarding the Gini coefficient equally well relate to other indices having the same essence (e.g. the Theil index, Atkinson index, Herfindahl-Hirschman index, Hoover index, etc.). The author states that the criticism of the application of the Gini coefficient bases on fallacious premises, first of all, on erroneous interpretation of the notion of distribution in statistics. The distribution is interpreted as a way of dividing a good (with positive or negative utility) between some units (individuals, firms, regions, etc.). However, the statistics uses a different notion of distribution, empirical probability distribution. Besides, in author’s sight, the publication under consideration absolutizes the interpretation of the Gini coefficient as ‘concentration ratio’ and its connection with the Lorentz curve. The article provides specific examples that illustrate the adequacy of the use of the Gini coefficient and similar indices calculated from average and relative values for measuring inequality (differentiation, unevenness, dispersion, etc.).

About the Author

K. P. Gluschenko
Institute of Economics and Industrial Engineering, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation


References

1. Громыко Г.Л., Матюхина И.Н. Об использовании коэффициента Джини в экономико-статистических исследованиях // Вопросы статистики. 2015. № 9. С. 56-66.

2. Giorgi G.M. Bibliographic portrait of the Gini concentration ratio // METRON - International Journal of Statistics. 1990. Vol. XLVIII. No. 1-4. P. 183-221.

3. Williamson J.G. Regional inequality and the process of national development: a description of patterns // Economic Development and Cultural Change. 1965. Vol. 13. No. 4. Part 2. P. 1-84.

4. Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю.В. Прохоров. - М.: Большая Российская энциклопедия, 1999.

5. Cowell F.A. Measurement of inequality // Handbook of Income Distribution. Vol. 1. Amsterdam: North Holland, 2000. P. 87-166.

6. Yitzhaki S., Schechtman E. The Gini methodology. A primer on a statistical methodology. - New York: Springer, 2013.

7. Forcina A., Giorgi G.M. Early Gini’s contributions to inequality measurement and statistical inference // Journal Electronique d’Histoire des Probabilités et de la Statistique. 2005. Vol. 1. No. 1. P. 1-15.

8. Brown M.C. Using Gini-style indices to evaluate the spatial patterns of health practitioners: theoretical considerations and an application based on Alberta data // Social Science & Medicine. 1994. Vol. 38. No. 9. P. 1243-1256.

9. Краснов C.М., Сайдуллаев Ф.С. Мониторинг инвестиционной активности в регионах России. Прямые иностранные инвестиции в 2012 году. - М.: АНО «НИСИПП», 2013. URL: nisse.ru/upload/iblock/ 2fe/invest2012.pdf.

10. Гранберг А.Г., Зайцева Ю.С. Межрегиональные сопоставления валового регионального продукта в Российской Федерации: методологические подходы и экспериментальные расчеты // Вопросы статистики. 2003. № 2. С. 3-17.


Review

For citations:


Gluschenko K.P. On the issue of application of the Gini coefficient and other inequality indices. Voprosy statistiki. 2016;(2):71-80. (In Russ.) https://doi.org/10.34023/2313-6383-2016-0-2-71-80

Views: 1153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-6383 (Print)
ISSN 2658-5499 (Online)